Analysis of Axis Aligned Bounding Box in Distributed Virtual Environment

ثبت نشده
چکیده

Axis Aligned Bounding Box (AABB) is the simple method for object collision detection, but it has limitation in detection process. In decades, some better methods have been generated such as Oriented Bounding Box (OBB) and HPCCD. Unfortunately, these methods are not used in DVE. This paper aims to analyze why most DVEs still use AABB in detecting objects collision in the environment. This research begins with developing the suitable DVE. The DVE should make many users collaborate with each other, and it has physics activities such as gravity pole, movement, etc. Each user is able to create objects and they should be visible to other users. To detect the object collision, AABB is implemented in the DVE. Further, to analyze the collision detection process and the performance of DVE, there are two parameters used, i.e. runtime and frame rate of simulation application. The experiment results show that adding the computation workload into AABB on DVE increases the runtime significantly compared with regular application. The lack of performance is also shown by the application frame rates in which strictly decrease so that the DVE performance degrades. General Terms Distributed Virtual Environment, Distributed Simulation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of Axis-aligned Bounding Box for Opengl 3d Virtual Environment

This paper describes a simple and straight forward implementation of Axis-Aligned Bounding-Box (AABB) for OpenGL 3-Dimensional (3D) virtual environment for games and simulation purpose. The implementation of AABB is conducted in OpenGL graphic library version 1.2 with C++ programming language by using Visual C++. The implementation could help young and begineer computer graphics student to mast...

متن کامل

International Conference on Advanced Research in Virtual and Rapid Prototyping SURFACE COLLISION DETECTION WITH THE OVERLAPPING BOUNDING BOX BETWEEN VIRTUAL PROTOTYPE MODELS

This paper identifies requirements and proposes a surface collision detection algorithm for assisting in assembly/disassembly and maintenance verification operations in virtual prototype environments. Virtual prototype models are defined as a collection of surfaces. Available collision detection toolkits for virtual environments are based on polygons. The integration of surface knowledge into t...

متن کامل

Robust BVH Ray Traversal

Most axis-aligned bounding-box (AABB) based BVH-construction algorithms are numerically robust; however, BVH ray traversal algorithms for ray tracing are still susceptible to numerical precision errors. We show where these errors come from and how they can be efficiently avoided during traversal of BVHs that use AABBs.

متن کامل

Robust BVH Ray Traversal - revised

Most axis-aligned bounding-box (AABB) based BVH-construction algorithms are numerically robust; however, BVH ray traversal algorithms for ray tracing are still susceptible to numerical precision errors. We show where these errors come from and how they can be efficiently avoided during traversal of BVHs that use AABBs.

متن کامل

Surface Collision Detection for Virtual Prototyping

This paper presents an efficient collision detection algorithm designed to support assembly and maintenance simulation of complex assemblies. This approach exploits the surface knowledge, available from CAD models, to determine intersecting surfaces. It proposes a novel combination of Overlapping Axis-Aligned Bounding Box (OAABB) and R-tree structures to gain considerable performance improvemen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014